Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Med Chem ; 65(4): 2971-2987, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1616927

ABSTRACT

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the most common complications in COVID-19. Elastase has been recognized as an important target to prevent ALI/ARDS in the patient of COVID-19. Cyclotheonellazole A (CTL-A) is a natural macrocyclic peptide reported to be a potent elastase inhibitor. Herein, we completed the first total synthesis of CTL-A in 24 linear steps. The key reactions include three-component MAC reactions and two late-stage oxidations. We also provided seven CTL-A analogues and elucidated preliminary structure-activity relationships. The in vivo ALI mouse model further suggested that CTL-A alleviated acute lung injury with reductions in lung edema and pathological deterioration, which is better than sivelestat, one approved elastase inhibitor. The activity of CTL-A against elastase, along with its cellular safety and well-established synthetic route, warrants further investigation of CTL-A as a candidate against COVID-19 pathogeneses.


Subject(s)
Acute Lung Injury/drug therapy , Leukocyte Elastase/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Respiratory Distress Syndrome/drug therapy , Serine Proteinase Inhibitors/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Bleomycin , COVID-19/metabolism , COVID-19/pathology , Cell Line , Disease Models, Animal , Humans , Leukocyte Elastase/metabolism , Male , Mice , Mice, Inbred C57BL , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , COVID-19 Drug Treatment
2.
Amino Acids ; 54(2): 205-213, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1527473

ABSTRACT

COVID-19 has shaken all the countries across the globe and researchers are trying to find promising antiviral to cure the patients suffering from infection and can decrease the death. Even, different nations are using repurposing drugs to cure the symptoms and these repurposing drugs are hydroxychloroquine, remdesivir, and lopinavir, and recently, India has recently given the approval for the 2-deoxy-D-glucose for emergency purpose to cure the patients suffering from the COVID-19. Plitidepsin is a popular molecule and can be used in treatment of myeloma. Plitidepsin was explored by scientists experimentally against the COVID-19 and was given to the patient. It is found to be more a promising repurposing drug against the COVID-19 than the remdesivir. Therefore, there is a need to understand the interaction of plitidepsin with the main protease of SARS-CoV-2. Molecular docking of the plitidepsin against Mpro of SARS-CoV-2 was performed and the binding energy was found to be - 137.992 kcal/mol. Furthermore, authors have performed the molecular dynamics simulations of the main protease of SARS-CoV-2 in presence of plitidepsin at 300 and 325 K. It was found that the plitidepsin binds effectively with the main protease of SARS-CoV-2 at 300 K.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Depsipeptides/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides, Cyclic/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Coronavirus 3C Proteases/metabolism , Depsipeptides/chemistry , Depsipeptides/metabolism , Drug Repositioning , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protein Binding , SARS-CoV-2/enzymology
3.
Future Microbiol ; 16: 1289-1301, 2021 11.
Article in English | MEDLINE | ID: covidwho-1484978

ABSTRACT

COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Oceans and Seas , SARS-CoV-2/drug effects , Alkaloids/pharmacology , Anti-Inflammatory Agents , Antiviral Agents/chemistry , Depsipeptides , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacology , Humans , Lectins , Marine Biology , Molecular Docking Simulation , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Phycocyanin/pharmacology , Phytochemicals , Plant Lectins/chemistry , Plant Lectins/pharmacology , Polyphenols/pharmacology , Polysaccharides/pharmacology , Seaweed , Sesquiterpenes/pharmacology
4.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
5.
Eur J Med Chem ; 221: 113530, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1213172

ABSTRACT

This paper presents the design and study of a first-in-class cyclic peptide inhibitor against the SARS-CoV-2 main protease (Mpro). The cyclic peptide inhibitor is designed to mimic the conformation of a substrate at a C-terminal autolytic cleavage site of Mpro. The cyclic peptide contains a [4-(2-aminoethyl)phenyl]-acetic acid (AEPA) linker that is designed to enforce a conformation that mimics a peptide substrate of Mpro. In vitro evaluation of the cyclic peptide inhibitor reveals that the inhibitor exhibits modest activity against Mpro and does not appear to be cleaved by the enzyme. Conformational searching predicts that the cyclic peptide inhibitor is fairly rigid, adopting a favorable conformation for binding to the active site of Mpro. Computational docking to the SARS-CoV-2 Mpro suggests that the cyclic peptide inhibitor can bind the active site of Mpro in the predicted manner. Molecular dynamics simulations provide further insights into how the cyclic peptide inhibitor may bind the active site of Mpro. Although the activity of the cyclic peptide inhibitor is modest, its design and study lays the groundwork for the development of additional cyclic peptide inhibitors against Mpro with improved activities.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Protease Inhibitors/pharmacology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Design , HEK293 Cells , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides, Cyclic/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/toxicity , Protein Conformation
6.
Mar Drugs ; 19(2)2021 Feb 11.
Article in English | MEDLINE | ID: covidwho-1079668
7.
J Clin Invest ; 130(11): 5674-5676, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-760323

ABSTRACT

In a stunningly short period of time, the unexpected coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has turned the unprepared world topsy-turvy. Although the rapidity with which the virus struck was indeed overwhelming, scientists throughout the world have been up to the task of deciphering the mechanisms by which SARS-CoV-2 induces the multisystem and multiorgan inflammatory responses that, collectively, contribute to the high mortality rate in affected individuals. In this issue of the JCI, Skendros and Mitsios et al. is one such team who report that the complement system plays a substantial role in creating the hyperinflammation and thrombotic microangiopathy that appear to contribute to the severity of COVID-19. In support of the hypothesis that the complement system along with neutrophils and platelets contributes to COVID-19, the authors present empirical evidence showing that treatment with the complement inhibitor compstatin Cp40 inhibited the expression of tissue factor in neutrophils. These results confirm that the complement axis plays a critical role and suggest that targeted therapy using complement inhibitors is a potential therapeutic option to treat COVID-19-induced inflammation.


Subject(s)
Betacoronavirus/metabolism , Complement Activation/drug effects , Coronavirus Infections , Pandemics , Peptides, Cyclic/pharmacology , Pneumonia, Viral , Thromboplastin/biosynthesis , Thrombotic Microangiopathies , Blood Platelets/metabolism , Blood Platelets/pathology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Neutrophils/metabolism , Neutrophils/pathology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , SARS-CoV-2 , Severity of Illness Index , Thrombotic Microangiopathies/drug therapy , Thrombotic Microangiopathies/metabolism , Thrombotic Microangiopathies/pathology , Thrombotic Microangiopathies/virology
SELECTION OF CITATIONS
SEARCH DETAIL